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Abstract. We find the maximum modulus of the n-th Taylor
coefficient cn of a function in the unit ball of Hp, 1 ≤ p ≤ ∞,
provided that c0 is fixed, and identify the corresponding extremal
functions.

1. Introduction

We are interested in finding the maximum Taylor coefficient of a
function in the unit ball of Hp, 1 ≤ p ≤ ∞, whose value c at the origin
is fixed and in identifying the corresponding extremal functions.

The motivation for this problem comes in part from the Hausdorff-
Young inequality and the Bohr phenomenon. The Hausdorff-Young
inequality states that if f ∈ Lp = Lp(T), where T = {z ∈ C : |z| = 1},
then

‖f‖Lp ≥ ‖{f̂(n)}‖lq

for 1 ≤ p ≤ 2, and q such that 1
p

+ 1
q

= 1. If p = 2, then q = 2 and

we have equality; this is Parseval’s formula. If p > 2, the inequality is
known to fail. In particular, if p = ∞, it is obviously not the case that

‖f‖∞ ≥
∞∑

n=−∞
|f̂(n)|.

However, for f ∈ H∞ and r = 1
3
,

‖f‖∞ ≥
∞∑

n=0

|f̂(n)|rn.

This is a classical theorem of H. Bohr ([3]) and can be shown from F.
Wiener’s estimates [2]. One can ask whether such a phenomenon exists

Date: November 1, 2001.
1991 Mathematics Subject Classification. Primary: 30H05, 42A16.
The first author was supported in part by the University Research Council at

Seton Hall University.
This paper is in final form and no version of it will be submitted for publication

elsewhere.
1



2 CATHERINE BENETEAU AND BORIS KORENBLUM

for Hp, 2 < p < ∞. Namely, does there exist 0 < r < 1 such that

‖f‖p ≥ (
∞∑

n=0

|f̂(n)|qrn)
1
q ?

Our estimates of the Taylor coefficients of Hp functions show that no
such Bohr phenomenon holds when 2 < p < ∞.

Finally, our results give a new proof of a conjecture by Hummel,
Scheinberg, and Zalcman (see [5], p. 189) related to the Krzyz problem
for Hp functions in the case that n = 1. The conjecture states that for
n ≥ 1

sup{|f̂(n)| : f ∈ Hp, ||f ||p ≤ 1, f zero-free } = (
2

e
)

1
q

and gives the form of the corresponding extremal function.

2. The Main Problem and Known Cases

Problem. Given 1 ≤ p ≤ ∞, 0 ≤ c ≤ 1, and n ≥ 1, find

Mp(n, c) = max{|f̂(n)| : f ∈ Hp, ‖f‖p ≤ 1, |f(0)| = c},
where f(z) =

∑∞
j=0 f̂(j)zj, and identify the extemal functions.

Notice that if f is extremal for Mp(n, c), then so is eiαf(eiβz). We

will therefore consider extremal f so that f(0) = c and f̂(n) ≥ 0. This
problem is known for certain cases. If p = 2, by Parseval’s identity, it
is easy to see that M2(n, c) =

√
1− c2 and the corresponding unique

extremal function is fext(z) = c +
√

1− c2zn. When c = 0, for all 1 ≤
p ≤ ∞, Mp(n, 0) = 1 and fext(z) = zn. When c = 1, Mp(n, 1) = 0, and
fext(z) = 1. If p = ∞, M∞(n, c) = 1−c2 (see [2]) and the corresponding
unique extremal function is fext(z) = c+zn

1+czn .
In addition, it is easily seen that for all p ≥ 1, Mp(n, c) = Mp(1, c).

For suppose f is a solution to the given extremal problem. Consider

f̃(z) =
1

n

n−1∑

k=0

f(e
2πk
n

iz
1
n )

=
∞∑

j=0

f̂(jn)zj.

Then f̃ ∈ Hp, ‖f̃‖p ≤ ‖f‖p, f̃(0) = f(0), and f̃ ′(0) = f̂(n). Therefore

the extremal values of f̂(n) are the same as the ones calculated in the
case when n = 1.

All other cases are unknown. Therefore we consider the extremal
problem stated above for values of p such that 1 ≤ p < ∞ (p 6= 2)
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and c such that 0 < c < 1. In the following sections, we consider only
such values of p and c. In proving the main result, we prove some
intermediate theorems which are of independent interest.

3. Statement of the Main Results

Theorem 3.1. If 2−
1
p ≤ c ≤ 1, then

Mp(n, c) =
2

p
c1− p

2

√
1− cp

and the corresponding extremal function is

f(z) = (c
p
2 +

√
1− cpzn)

2
p .

Theorem 3.2. If 0 < c < 2−
1
p , then the zero-free function f such that

‖f‖p ≤ 1 and |f(0)| = c that maximizes |f ′(0)| is

f(z) = 2−
1
p (1 + z)

2
p (2

1
p c)

1−z
1+z

and

f ′(0) = c(
2

p
+ log

1

2
2
p c2

).

Theorem 3.3. If 0 < c < 2−
1
p , then

Mp(n, c) = (
2

p
− 1)cv +

c

v

and the corresponding extremal function is

f(z) =
c

v
(1 + vzn)

2
p
−1(v + zn)

where v is the unique root ( 0 < v ≤ 1) of vp− cp = cpv2. In particular,
for p = 1 and 0 < c < 1

2
, M1(n, c) = 1 and f(z) = c + zn + cz2n.

4. Intermediate Results

In the following theorems, we will take 0 < c < 1.

Proposition 4.1. The inner function G that maximizes ReG′(0) if
G(0) = c is

G(z) =
c + z

1 + cz
and

G′(0) = 1− c2.

Proof. This follows directly from the H∞ case, since the solution to the
maximal problem in that situation is in fact the above inner function.

¤



4 CATHERINE BENETEAU AND BORIS KORENBLUM

Proposition 4.2. The singular function S(z) that maximizes ReS ′(0)
if S(0) = c is

S(z) = c
1−z
1+z

and

S ′(0) = 2c log
1

c
.

Proof. Since S is a singular function, there exists a singular positive
measure µ such that

S(z) = exp(−
∫ π

−π

eit + z

eit − z
dµ(t)).

Therefore

S ′(z) = S(z)(−
∫ π

−π

2eit

(eit − z)2
dµ(t)).

In particular,

S ′(0) = c(−
∫ π

−π

2e−itdµ(t)).

Therefore

ReS ′(0) = c(−
∫ π

−π

2 cos tdµ(t))

≤ 2c

∫ π

−π

dµ(t)

= 2c log
1

c
Notice that this maximum is in fact attained when µ has full mass at
t = π and thus

S(z) = c
1−z
1+z .

¤
Proposition 4.3. If 0 < c < 2−

1
p , then there is no outer function f

that maximizes Ref ′(0) under the restrictions ‖f‖p ≤ 1 and f(0) = c.

Proof. For simplicity, we will consider p = 1, the proof for p > 1 being
similar. Let f ∈ H1 be an outer function such that ‖f‖1 ≤ 1 and
f(0) = c. Then

f(z) = exp(
1

2π

∫ π

−π

eit + z

eit − z
ϕ(t)dt)

where ϕ(t) = log |f(eit)|. Taking derivatives and real parts, we can
conclude that

Ref ′(0) = 2c
1

2π

∫ π

−π

ϕ(t) cos tdt.
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We now have a variational problem, where we need to find

max
1

2π

∫ π

−π

ϕ(t) cos tdt

under the constraints 1
2π

∫ π

−π
eϕ(t)dt = 1 and 1

2π

∫ π

−π
ϕ(t)dt = log c < 0.

If this maximum equals µ and is attained when ϕ(t) = ϕ0(t), then
ϕ0 also solves the following dual variational problem: find

min
1

2π

∫ π

−π

eϕ(t)dt

under the constraints 1
2π

∫ π

−π
ϕ(t) cos tdt = µ and 1

2π

∫ π

−π
ϕ(t)dt = log c,

because the above minimum is then equal to 1. To see this, sup-
pose that for some ϕ(t) = ϕ1(t) satisying the constraints of the dual
problem 1

2π

∫ π

−π
eϕ1(t)dt < 1. Then there is some s > 0 such that the

function ϕ2(t) = ϕ1(t) + s cos t satisfies 1
2π

∫ π

−π
ϕ2(t) cos tdt = µ + s

2
,

1
2π

∫ π

−π
ϕ2(t)dt = log c, and 1

2π

∫ π

−π
eϕ2(t)dt = 1, contrary to the assumed

maximality of µ in the original variational problem.
The constraints in the dual problem say that in the real Fourier series

of ϕ the two coefficients are fixed, namely the constant term and the
coefficient of cos t. By a standard variational argument we obtain that,
whenever a bounded function h(t) satisfies

∫ π

−π

h(t)dt =

∫ π

−π

h(t) cos tdt = 0,

the following must hold:

(
d

ds

∫ π

−π

eϕ0(t)+sh(t)dt)s=0 =

∫ π

−π

eϕ0(t)h(t)dt = 0.

In particular, this is true for h(t) = sin nt (n > 0) and h(t) = cos nt
(n 6= 0, 1), which implies that eϕ0(t) = A + B cos t, ϕ0(t) = log(A +
B cos t), where A and B are constants, and ϕ0(t) is the extremal func-
tion for the original variational problem.

Since 1
2π

∫ π

−π
eϕ0(t)dt = 1, A = 1. Therefore 0 ≤ B < 1. Consider now

the function

k(γ) =
1

2π

∫ π

−π

log(1 + γ cos t)dt

for 0 ≤ γ ≤ 1. Notice that k(B) = log c. Also k′(γ) < 0, k(0) = 0 and
k(1) = − log 2. This forces c ≥ 1

2
, which is a contradiction. Therefore

no such constant B exists, and there is no solution to the extremal
problem. ¤
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5. Proofs of the Main Results

We begin by considering the main problem for functions whose value
at the origin is not close to 0 as stated in Theorem 3.1.

Proof. Let 2−
1
p ≤ c < 1, n = 1, and consider f ∈ Hp such that f(0) = c

and ‖f‖p ≤ 1. Write f(z) = B(z)F (z), where B is a Blaschke product
and where F has no zeros. Let B(0) = v > 0 and F (0) = u > 0. Note
that uv = c. Since B ∈ H∞ and ‖B‖∞ = 1, F. Wiener’s estimates ([2])
show that

|B′(0)| ≤ 1− v2.

Note that F ∈ Hp, ‖F‖p = ‖f‖p = 1, and F has no zeros. Define

G(z) = F (z)
p
2 . Then ‖G‖2

2 = ‖F‖p
p = 1 and G(0) = u

p
2 . Therefore, by

the case p = 2,

|G′(0)| ≤ √
1− up.

Writing F (z) = G(z)
2
p , we get

|F ′(0)| ≤ 2

p
(u

p
2 )

2
p
−1
√

1− up

=
2

p
u1− p

2

√
1− up

Putting the two estimates above together gives

|f ′(0)| = |B′(0)F (0) + B(0)F ′(0)|
≤ (1− v2)u + v

2

p
u1− p

2

√
1− up

= c(
1

v
− v) +

2

p
c1− p

2

√
vp − cp

Therefore, define

ϕ(v) = c(
1

v
− v) +

2

p
c1− p

2

√
vp − cp

and find max ϕ(v) for c ≤ v ≤ 1. Note that

ϕ′(v) = c(− 1

v2
− 1) +

2

p
c1− p

2
1

2

1√
vp − cp

pvp−1

= −c(1 +
1

v2
) + c1− p

2
vp−1

√
vp − cp
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Therefore,

ϕ′(v) ≥ 0 ⇔ c−
p
2

vp−1

√
vp − cp

≥ 1 +
1

v2

⇔ (1 + v2)2(cp)2 − vp(1 + v2)2cp + v2(p+1) ≥ 0

⇔ (cp − vp

1 + v2
)(cp − v2+p

1 + v2
) ≥ 0

When c ≥ 2−
1
p , ϕ′(v) ≥ 0 and the maximum of ϕ(v) is obtained at

v = 1 :

ϕ(1) =
2

p
c1− p

2

√
1− cp.

In that case, the function

f(z) = (c
p
2 +

√
1− cpz)

2
p

is an element of Hp with norm 1 such that f(0) = c and f ′(0) = ϕ(1).

When n > 1, use the function f̃ described in Section 2. Since f(z) =

f̃(zn), we obtain the extremal function

f(z) = (c
p
2 +

√
1− cpzn)

2
p

with the same maximal n-th Taylor coefficient as in the case n = 1. ¤
Notice that f is a zero-free function, and therefore Theorem 3.1 also

solves the extremal problem for zero-free Hp functions whose value at
the origin is not too close to 0. Let us now consider zero-free functions
in Hp whose value at the origin are small, as stated in Theorem 3.2.

Proof. Let 0 < c < 2−
1
p and let f ∈ Hp be a non-zero function such

that f(0) = c and ‖f‖p ≤ 1 for which |f ′(0)| is maximal. Write f(z) =
S(z)F (z) where S is a singular function and F is an outer function.
Writing S(0) = u and F (0) = v, notice that by Proposition 4.3, v ≥
2−

1
p . Using the estimates given by Proposition 4.2 and Theorem 3.1,

we get that

|f ′(0)| ≤ v2u log
1

u
+ u

2

p
v1− p

2

√
1− vp

= 2c log
v

c
+

2c

p

√
1

vp
− 1

= ϕ(v)

One can easily show that ϕ(v) is decreasing on [2−
1
p , 1] and therefore

attains its maximum at v = 2−
1
p . Therefore u = c2

1
p , and the function

f(z) = (2
1
p c)

1−z
1+z 2−

1
p (1 + z)

2
p
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is a zero-free function such that f(0) = c, ‖f‖p = 1 and

f ′(0) = ϕ(2−
1
p ) = c(

2

p
+ log

1

2
2
p c2

).

¤
We now consider functions in Hp that can have zeros and whose

value at the origin is small, as stated in Theorem 3.3.

Proof. Consider the case n = 1 and let f ∈ Hp be such that ‖f‖p ≤ 1
and f(0) = c. Write f(z) = B(z)F (z) where B is a Blaschke product
with B(0) = v > 0, and F is zero-free with F (0) = u.

Suppose first that u ≥ 2−
1
p . Then c ≤ v ≤ 2

1
p c, so by the proof of

Theorem 3.1

|f ′(0)| ≤ c(
1

v
− v) +

2

p
c1− p

2

√
vp − cp

= ϕ(v)

and

ϕ′(v) ≥ 0 ⇐⇒ (cp − vp

1 + v2
)(cp − v2+p

1 + v2
) ≥ 0.

If c < 2−
1
p then ϕ′(v) = 0 has two solutions v1 and v2 in [c, 1] where v1 is

the solution to vp− cp = cpv2 and v2 is the solution to v2+p− cp = cpv2.
It is not hard to show that

c ≤ v1 ≤ 2
1
p c ≤ v2 ≤ 1

and that ϕ attains its maximum in [c, 2
1
p c] at v1. In that case, after

simplification,

max ϕ(v) = (
2

p
− 1)cv1 +

c

v1

.

Let us suppose now that 0 < u < 2−
1
p . In this case, 2

1
p c < v ≤ 1,

and by Theorem 3.2, we know that

f ′(0) ≤ u(1− v2) + vu((
2

p
+ log

1

2
2
p u2

)

=
c

v
− cv +

2c

p
− 2c log(

2
1
p c

v
)

= ψ(v).

ψ is easily seen to be decreasing and therefore attains its maximum at

2
1
p c, and

ψ(2
1
p c) = 2−

1
p − c22

1
p +

2c

p
.
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Comparing this value with ϕ(v1), we conclude that ϕ(v1) ≥ ψ(2
1
p c).

Taking

f(z) =
v + z

1 + vz
((

c

v
)

p
2 +

√
1− (

c

v
)pz)

2
p

= (
c

v
)(1 + vz)

2
p
−1(v + z)

gives a function in Hp with norm 1 such that f(0) = c and

f ′(0) = (
2

p
− 1)cv +

c

v
,

where v is the unique solution (0 < v ≤ 1) of vp − cp = cpv2.

When n > 1, we use f̃ as described in Section 2 to show that
Mp(n, c) = Mp(1, c) and the corresponding extremal function is

f(z) = (
c

v
)(1 + vzn)

2
p
−1(v + zn)

where v is such that vp − cp = cpv2. ¤

6. Corollaries

Corollary 6.1. If 1 ≤ p < ∞, ‖f‖p = 1, |f(0)| < 2−
1
p and

|f ′(0)| > |f(0)|(2
p

+ log
1

2
2
p |f(0)|2

),

then f has at least one zero in the open unit disk.

Proof. This result follows directly from Theorem 3.2. ¤
Corollary 6.2. Let p ≥ 1. Then

sup{|f ′(0)| : f ∈ Hp, ||f ||p ≤ 1, f zero-free } = (
2

e
)

1
q .

Proof. If f ∈ Hp is non-zero and ‖f‖p ≤ 1, then let f(0) = c for some
0 < c ≤ 1. By Theorems 3.1 and 3.2,

|f ′(0)| ≤
{

c(2
p

+ log 1

2
2
p c2

) 0 < c < 2−
1
p

2
p
c1− p

2

√
1− cp 2−

1
p ≤ c ≤ 1

By varying c between 0 and 1, it is straightforward to show that the

maximum derivative is obtained at c = 1
2
(2

e
)

1
q and the corresponding

extremal function is

f(z) = (
(1 + z)2

2
)

1
p (exp

z − 1

z + 1
)

1
q

as conjectured by Hummel, Scheinberg, and Zalcman in [5]. ¤
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This result was first obtained by Johnny Brown in [4] by a completely
different method.

Corollary 6.3. Let 2 < p < ∞ and q be such that 1
p

+ 1
q

= 1. Then

there does not exist 0 < r < 1 such that

‖f‖p = (

∫ π

−π

1

2π
|f(eit)|pdt)

1
p ≥ (

∞∑
n=0

|f̂(n)|qrn)
1
q

for every f ∈ Hp.

Proof. Consider the extremal function f in Theorem 3.1 for n = 1. We

have ‖f‖p = 1. For 2−
1
p ≤ c < 1, f(0) = c, and

f ′(0) =
2

p
c1− p

2

√
1− cp > A

√
1− c

if c is close enough to 1, where A is a positive constant. Therefore,
since q < 2,

∞∑

k=0

|f̂(k)|qrk ≥ cq + Aqr(1− c)
q
2 > 1

for c sufficiently close to 1. ¤
Notice that this corollary implies that no Bohr phenomenon holds

for Hp and Lp (2 < p < ∞.) This was also proved independently by
L. Aizenberg [1] using a different method. It is known that the Bohr
phenomenon does hold for real L∞. For L∞, the Bohr phenomenon
does not hold as shown by an example of Liflyand’s [6]. Whether such
a Bohr phenomenon holds for real Lp (2 < p < ∞) remains an open
problem.
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