
Reticular or Articulatory Geometry
[net]

Artifacts found at Blombos, about 75,000 years old, including
red ochre stone with design carved in it; see Blombos Cave
Project.

Humans have long found the business of successfully
articulating precise things together rewarding, both
economically and psychologically. In addition, precise
articulation is necessary in order to make things come out
right, from the construction of temple complexes to carving
stone balls with curious symmetries. The necessity and
inspiration of articulation in geometric figures suggests that
this ancient field of geometry really should be called
"articulatory geometry" -- and indeed, it is not difficult to find
the adjective "articulatory" and the noun "geometry" in close
proximity in mechanical engineering and anatomy papers.

"Articulatory" has a more distinguished pedigree than
"reticular". Unlike the latin rete, which simply appeared in
ancient Rome from who-knows-where, the coincidence of the
latin artus (joint) and articulus (joint, precise point, or
division), related to armus (arm) and hence to ars (art),
seems connected to the Hittite ara (something that fits) and
the Sanskrit irmas (arm): the word seems to trace to Indo-
European roots, suggesting that the art of fitting things
together (as one might punningly describe architecture) has
been a longstanding focus of attention in Eurasian
civilization.

The word reticular is derived from rete, a latin word "of obscure origin" that means net. In
English, an object is "reticular" if it is intricate and netlike, consisting of many articulated
components.

The word geometry is a Greek concoction, meaning "the measurement of the Earth"; this
etymology refers to the traditional view (advanced by Herodotus) that geometry was invented
by Egyptian (and perhaps Mesopotamian) surveyors. However, there is archeological
evidence of interest in polyhedra and other geometric objects (e.g., right; in fact, all five
Platonic solids are represented -- in a sense -- among these ancient Scottish balls).

Omar Yaghi has denoted as reticular chemistry that part of nanoscience and materials
science concerned with the assembly of large or potentially unbounded structures composed
of many articulating parts. Similarly, Georg Alexander Pick's theorem on the areas of
polygons formed by families of parallel lines on the plane inspired fans to dub his work on
the geometry of such net-like objects reticular geometry, (although the phrase is obscure
enough that as of September, 2010, the AMS MathSciNet had never heard of it.) And so we
dub as RETICULAR GEOMETRY that area of geometry concerned with large and
complex geometric objects consisting of many articulating components.

Of course, the use of the adjective "reticular" instead of the adjective "articulatory" suggests
a bias in favor of studying the final, fully assembled geometric structures, rather than the
details involved in the design process. This is a bias that geometers should avoid in practice,
although it is quite possible that the mathematics of the two different aspects of this geometry
are different (and in fact, there is anecdotal evidence that the mathematics of the final
structures in reticular geometry is more difficult than the mathematics of the assembly
process in articulatory geometry).

On this page:

Reticular Geometry and Design. Much of the interest in what we might call "reticular
geometry" has been driven by economic demand, by the need to design complicated
objects.
Reticular Geometry as Mathematics. Nevertheless, the problem how how to fit together
many geometric objects is ultimately a mathematical one, associated with several
extant fields of mathematics.
The Sociology of Reticular Geometry. On the other hand, there is a long history of
popular interest in the sorts of shapes people try to fit together, and how to fit them
together.
My Adventures in Reticular Geometry. I'm currently working on courses in the subject
while doing some research, in particular on Euclidean graphs as models of crystal
structure.

Image of carved stone balls, approximately four millennia
old, from Scotland's University of Glasgow's Hunterian
Museum; image from Wikimedia Commons.

Figurines and other decorative pottery go back several tens of
thousands of years, but we do not know when humans first
started creating art, as opposed to collecting things in Bower-
bird fashion. Of course, it is likely that most of our ancestors
collected artificial things made by artisans just as we collect
bric-a-brac made by local artists or manufactured by big
companies. One of the great holes in our history and
archeology is what people did collect or create: just as
nowadays, people collect ugly clocks, Elvis statues, and
crystal pyramids, it seems likely that ancient people collected
something. If so, collectibles were probably collectible
because of their novelty -- like fossils and crystals.

Objects associated with reticular geometry have always been
popular, and have always exerted influence on our esthetics.
Once artificial objects appeared, what were they? And were
they designed in advance or did artisans just feel their way?

Reticular Geometry and Design
Between thirty and forty thousand years ago, people started making vast numbers of things, and the
repertoire of human technology expanded dramatically. No one knows the reason for this "Paleolithic

Reticular Geometry as Mathematics
William C. Waterhouse (of Pennsylvannia State University) suggested in a paper, Discovery of the Regular
Solids, that polyhedra were inspired by the discovery of crystals. There is little direct evidence of this, but
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revolution", although explanations range from new trade routes to mutations. Whatever the reason, the result
was that people now had a need (or a desire) for designing all sorts of new blades, baskets, boats, and
whatever else the growing tribes demanded. We don't know much about their design processes, but by later
Antiquity, during the Roman era, there was a formal design process by which people designed buildings,
bridges, and other large structures.

Greek house plan after Vitruvius, posted in Wikipedia
Commons.

Reconstruction of the palace at Knossos, posted in
Wikimedia Commons.

Marcus Vitruvius Pollio's Architecture, written in
the first century B.C., is the oldest architectural
text known, and is an example of the interplay
between geometry and engineering. More
precisely, between reticular geometry -- in that
architecture relies on the articulation of many parts
-- and the design of complex structures.

Vitruvius' Architecture is an example of applied
reticular geometry: it was an account of the
structural elements, the properties of the materials
used to realize those structural elements, together
with some guidance on how to assemble the
desired building.

But clearly, Vitruvius' text was describing well-
understood contemporary information in
architecture and engineering, as can be seen from
much older and yet very sophisticated structures
around the Mediterranean. For example, the
Minoan palace of Knossos in Crete, which was
constructed and reconstructed repeatedly during
the second millennium B.C., clearly was the result
of repeated and incremental but still intelligent
design: it had stone stairs supported by wood
pillars (which meant that it required careful
planning), a working sewer system, and careful
placement and sizing of windows to light interiors.
Although no accounts of the design of the palace
survive, it was clearly designed by engineers who
were geometrically sophisticated.

In fact, not only the standard geometry of surveying, but the reticular geometry of fitting things together, are
apparent in ancient structures like the Anasazi complex now known as Pueblo Bonito, even though the
societies that built these structures appear to have been at best semi-literate, and left no texts for historians to
attempt to translate. That should not be surprising, for agriculture entails the geometry of surveying, and
once one starts to build things, one has to fit things together. Reticular geometry may be one of the first fruits
of any agricultural revolution.

Moving forward, during the "High Middle Ages" (roughly the 11th, 12th, and 13th centuries), Europeans
making the pilgrimage to Santiago de Compostela visited the embattled provinces of Andalusia -- roughly
that part of the Spanish peninsula under Islam -- and marveled at the architecture. The inspiration followed
them home, where they built Gothic cathedrals, which were not quite as organized as their Andalusian
models (like the Alhambra), and which occasionally fell down during construction. But stonemasons
gradually figured out how to wing it, and during the remainder of the Middle Ages, they filled northern
Europe with cathedrals of light. But the Mediterranean had much better light than northern Europe, and as
the Middle Ages waned into the Renaissance, the Mediterranean also had more money.

very little is known about scholarly, professional, or folk interest in polygons, polyhedra, tilings, or similar
structures before Kepler; we have a few scattered literary works and a lot of art, architecture, and
engineering. And even today, interest is scattered about in a variety of fields, and while many of us are
familiar with the usual suspects -- the Platonic solids, the Archimedean Solids, and the Catalan Solids, much
of the research in polyhedra is concerned with something other than polyhedra in mind. And as for putting
things together like so many legos...

Self-portrait (drawing) of
Albrecht Durer, posted on
Wikipedia Commons.

[Kepler]

Portrait of Johannes
Kepler, posted on
Wikipedia Commons.

Polygons, polyhedra, and other shapes permeate the
artistic and engineering worlds of many cultures, but
the mathematical attention is less clear: it appears
spotty, but the record is fragmentary, so we actually
don't much about this kind of geometry prior to the
Renaissance, when Europeans got interested in them.
Albrecht Durer wrote much about his interests, and
was a draftsman whose work helped inspire
descriptive geometry; his Painter's Manual introduced
the notion of a net of a polyhedron, which was
essentially the graph of its vertices and edges.
Johannes Kepler subsequently conducted a more
mathematical investigation, particularly of atomic
arrangements of matter (in A New Year's Gift of
Hexagonal Snow) and of the relationship between
polyhedra and astrology -- er, astronomy -- in
Harmonies of the World.

It is true that polyhedra -- or rather, their umpteen-dimensional analogues, polytopes -- are very big business
nowadays. Literally. One of the primary objects in Combinatorial Optimization is the solution space to a
system of simultaneous linear equations, which is the object of linear programming. If we represented each
linear equation as a half-space in some dimension, the solution space to the entire system would be a convex
polytope, and since businesses and governments use linear programming to make optimal allocations of
scarce resources, umpteen dimensional polytopes have been all the rage ever since the British government
used it to keep afloat during World War II.

But we are interested in how (geometric) things
can be taken apart and put back together.
Algebraic topology is interested in the related
problem of taking apart and gluing together
topological objects -- objects that can be
continuously distorted -- and we can borrow
some of the topological machinery. Machinery
that probably traces its provenance back to
Durer's nets, anyway.

One of the basic and most familiar dissections of
a polytope is into cells that make up its interior
and boundary. For example, the complex (e.g.,
CW-complex) of a polyhedron is the partially
ordered set (poset) consisting of its vertices, its
edges, its faces, and its interior, ordered by
inclusion. Such a dissection into cells can be
conducted on polytopes of arbitrary dimension.
But for our purposes, we may be even more
interested in the proposal that we can have
arbitrary complexes, i.e., any poset of cells
ordered by inclusion such that every boundary
cell of a cell in the complex is also a cell in the
complex. These complexes are indeed
complicated arrays of geometric objects that are
organized in space to fit together, and thus would
appear to be typical objects of reticular
geometry.

A "Johnson solid", an elongated triangular cupola,
posted in Wikipedia Commons. The complex consists of
the central three-dimensional interior, the fourteen faces
(two-dimensional cells), the 27 edges (one-dimensional
cells), and the 15 vertices (zero-dimensional cells).
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One of the challenges symbolic of the Renaissance was
the decision of the City of Florence to build a dome on
top of the Florence Cathedral of Saint Mary, even
though no one had built a dome that large since the
Pantheon over a millennium earlier. (Even worse, no one
knew how the Pantheon had been built, or even what,
exactly, the Pantheon was made of -- it turned out to be
reinforced concrete.) Worse, the one thing that they did
know was that building the scaffolding for the dome of
the Florence cathedral was impossible. To top it all off,
some silly people wanted a lantern (a structure like in
the one on top of the dome at right) on top, even though
the Pantheon at least did not have that complication.

Filippo Brunelleschi's solution -- which involved careful
(if secret) designs, developing a construction process in
which the partially built dome and the scaffolding
supported each other, on top of the Middle Eastern
device of having a heavy but hidden dome between two
light but pretty shell domes -- was a dramatic example of
the ability to build intricate structures designed in
advance.

The cathedral of Santa Maria del Fiore,
completed by Brunelleschi, posted in Wikipedia
Commons.

It is not coincidental that Brunelleschi was one of the pioneers of perspective drawing and painting, for the
problem of what a structure is and what it looks like was at the center of art and of architecture in the
Renaissance, for artists were working away from the abstract and symbolic art of the Middle Ages, while
architects were discovering that when they wanted to design genuinely novel buildings, it was a wise idea to
have a clear design in mind before they started building.

Albrecht Durer carried perspective into description (of military fortifications) and so descriptive geometry
and projective geometry began, officially with Johannes Kepler and Gerard Desargues and continuing up to
Gaspard Monge at the end of the 18th century, applying his work to military fortifications.

Images of an object from different positions,
posted in Wikipedia Commons by Hasan Isawi.

Very loosely, projective geometry (in at least its original
incarnation) was concerned with what an object looked
like at a particular distance, while descriptive geometry
was concerned with how it looked through a zoom lens --
in particular, at an infinite distance through an infinitely
powerful zoom lens (notice the picture at left, considered
ideally, is not from a particular distance but consists of
projections onto planes, as if through an infinitely
powerful zoom lens from an infinite distance).
Descriptive geometry provided a tool for designing novel
objects that some machinist would then try to make, and
it provided a critical intellectual toolbox for the Industrial
Revolution of the 19th century -- and it continues to earn
a living in technical and engineering drawing.

It is no coincidence that the Nineteenth century saw the
development of mass assembly, of industrial power, and
of astronomer John Herschel's invention of the blueprint.
The intuition had become, if you can draw it, you can
make it. A sideways glance at Frank Lloyd Wright's
fantasies suggest that that is not necessarily true: building
materials matter, and there is always the detail of the
assembly process itself...

During the Nineteenth century, a new kind of structure appeared. As scientists began to consider the
possibility that matter was composed of tiny and somewhat-divisible particles called molecules, themselves
composed of even tinier and possibly indivisible particles called atoms, people began to wonder what these
molecules might look like.

But how to put such complicated complexes together? In order to do this, we probably have to shock the
purists by taking pliers and crowbars to the standard definitions, but it's a free country and geometers are
already taking liberties, so...

While H. S. M. "Donald" Coxeter's primary concern seems to be more the shapes of individual things than
putting many things together to make complicated things, he did dissect many polytopes into individual
pieces and in the process helped develop much of the machinery available to the contemporary reticular
geometer. From the point of view of most contemporary geometers and algebraists, what Coxeter created
was a very useful system for representating algebraic objects.

Coxeter's dissection techniques, applied to very nice (highly symmetric)complexes, would produce a
chamber system of cells laid out in space, complete with an adjacency relation.
Meanwhile, mathematicians developed Group Representation Theory, whose ultimate program is to
take a horribly complicated and therefore unintelligible group, and find an isomorphic group that was a
nice group of permutations of some nice set -- often, a nice group of linear transformations on a very
nice (perhaps even real or complex) vector space.
One collection results are the Coxeter Groups, the peanut butter cup of chamber systems embedded in
spaces such that for such a chamber system, there is a nice group of transformations which, when
applied to the space the chamber system is embedded in, permute orbits of chambers around.

There are all kinds of restrictions, generalizations, and other variations of the above, including buildings (for
which Jacques Tits won the Abel Prize, the highest prize in mathematics). In all this, we can see that
geometry is now in service to algebra, as can be seen by the very title of, say, Michael Davis's book on The
Geometry and Topology of Coxeter Groups. Whether Coxeter would approve of Geometry being the
handmaiden of algebra is another matter.

But of course, geometers could turn the relationship around...

Imagine the plane chopped into eight pieces by four mirrors, from
which we get four reflections. Those four reflections generate a
dihedral group (of order eight) of isometries of the plane. We could
regard those eight pieces as eight vertices, with an edge relation
representing adjacency, giving us a cyclic graph. Then the four
reflections generate a dihedral group (of order eight) of
automorphisms of that graph. With only one orbit of vertex, this
Euclidean graph represents a uninodal or vertex transitive net, with
which Richard James can model "objective structures". Image on
this website, released to the public domain.

Let me give an example. A reflection
in Euclidean space is an affine
transformation that reflects points
across some line (in two-dimensional
space), plane (in three-dimensional
space), or other hyperplane in
Euclidean space. And a Reflection
Group is a group generated by
reflections.

In a Wythoff Construction, one starts
with a fundamental region of a
reflection group (i.e., a closed
polyhedron that intersects each orbit
of the reflection group at least once
while its interior intersects each orbit
at most once). Then one applies the
elements of the reflection group to the
fundamental region to get copies of it
(which are also fundamental regions),
and these copies cover the entire
space, although the intersection of any
two copies of this fundamental region
intersect (if at all) only within their
boundaries. The result is a tessellation
of the original space, and this
tessellation tells the algebraist
something about what the reflection
group looks like.

But one can use the same approach to build, say, a Euclidean graph whose vertices represent, say, atoms, and
whose edges represent, say, chemical bonds. Embedding a fragment of a graph inside a putative fundamental
region, one obtains a Euclidean graph that might be an interesting object in itself -- perhaps, as hoped by the
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Models of molecules -- including August Wilhelm von Hoffman's stick-and-ball models -- appeared in the
later Nineteenth century, even before there was a consensus in the scientific community about atoms and
molecules. They were, as George Polya pointed out, combinatorial objects, and thus graph theory could be
used to model molecules. But they were also geometric objects.

Isomers are molecules with the same chemical
formula -- the same number of each kind of
constituent atom -- and yet are structurally
different. One notorious kind of (pair of) isomers
are the stereoisomers, i.e., two molecules that are
mirror images of each other. This issue of chirality
-- of mirror images, of right- and left-handedness -
- became one of the central issues in
stereochemistry, although it involves the spacial
relationships between atoms in a molecule, or
between molecular building blocks (MBBs) in a
super-molecule.

During the early Twentieth century, new
techniques for determining the structure of
molecules pushed geometry into the foreground.
But during the later Twentieth century, something
new arose: the ability to control molecular
building blocks, or even individual atoms,
allowing chemists to design and assemble novel
structures. As Richard Feynman predicted in an
influential address on There's Plenty of Room at
the Bottom, this led to a qualitative change in
science and engineering. During the last few
decades, scientists have assembled graphite-like
polyhedra, DNA complexes, artificial proteins, and
other nano-objects. As the target products get more
complicated, the mathematics of the design
principles get more sophisticated, and a demand
appears for more effective mathematics for more
effective design.

Image of Fullerene c540, an example of a fullerene, i.e.,
a finite carbon structure in a graphene-like (graphite-
like) arrangment. Fullerenes were named after
architect and geometric enthusiast Richard
Buckminster Fuller. Image posted in Wikipedia
Commons.

The notion that all matter is composed of tiny particles is ancient: the Greek philosophers Democritus and
Epicurus championed the notion, which Aristotle refuted (at least to the satisfaction of the Europeans). The
atomic theory was resurrected by Johannes Kepler and Robert Boyle, and very quickly became central to
crystallography, for crystallographers from Nicolas Steno to Rene Hauy found that they could explain the
polyhedral shapes of crystals by assuming that crystals were composed of very regular arrays of tiny
something-or-others. The Nineteenth century saw the protracted foodfight over the atomic theory, and
crystallography was at the center. The structure of crystals made sense if they were composed of something
like atoms or molecules. And although the final argument for the atomic theory was based on molecular
motion -- the only viable explanation for Brownian motion (the habit of dust particles floating on water to
jiggle about randomly) seems to be Albert Einstein's proposal that tiny particles are jostled by even tinier
molecules -- the success of the atomic theory in crystallography helped set the stage.

creators of the Symmetry-Constrained Intersite Bonding Search (SCIBS), a geometric representation of the
atomic structure of a zeolite crystal.

Traversing graphs -- Euclidean or otherwise -- using transformations that are (when restricted to those
graphs) automorphisms brings us to the group theory that consists of:

Taking a group and labelling a set of generators with symbols, and then
Assigning to each element of that group a list of those symbols -- a word -- encoding a composition of
generators that will produce that element.

This leads us to Geometric Group Theory. One thread through the work of Jean-Pierre Serre and the work
described in Warren Dicks & Martin Dunwoody's book on Groups acting on graphs is the use of words to
encode traversals of graphs. And if the group one starts with is particularly nice, its word problem may
actually be solvable by a automaton, making it an automatic group; the crystallographic groups are
automatic, and these are many of our most important examples at the moment.

Wythoff constructions are only one source of
tessellations, and tessellations form a broader class than
just (near) partitions into fundamental regions. Typically,
a tiling (tessellation) is a covering of a Euclidean space
by finite (bounded) closed sets (called tiles) such that:

Any two tiles are either disjoint or intersect across
their boundary, and
There are finitely many congruence classes of tile.

Two of SCIBS's competitors work by enumerating tilings
(or more precisely, Delaney-Dress symbols representing
tilings), and then:

In the case of the algorithm developed by John
Huson, Olaf Delgado-Friedrichs, et al, interpreting
the tiling of 3-space as crystal, or
In the case of the Euclidean Patterns in Non-
Euclidean Tilings [EPINET] program, taking a
tiling of a 2-dimensional hyperbolic space and
wrapping it around a nice and known 3-
dimensional structure to get a novel structure.

Tiling by "dragon curves", posted in Wikipedia
Commons.

The most standard classification of tessellations are into the periodic and aperiodic; a tessellation is periodic
if there is a basis of its underlying vector space such that any translation of the tessellation maps the
tessellation onto itself: it repeats in axial directions. Periodic tessellations are often treated as models of
crystal structure, while aperiodic tessellations have been used (depending on regularity properties) to model
a range of materials from quasicrystals to glasses.

A related structure is the packing, in which structures are embedded in space like a tessellation, only they no
longer have to cover the space they are embedded in. The standard issue is usually making all the objects fit.

Taking a larger perspective beyond assembling solid rigid objects in a vacuum to be connected at particular
junctions, there are several directions in which we can generalize:

Are these objects rigid? If we permit them to be completely "flexible", we are in a situation more
readily dealt with using topology. However, there may be intermediate situations in which one is
dealing with components that are somewhat rigid. While the mathematical theories of rigidity tend to
be aimed at a more binary situation -- objects are rigid or they are not -- recalling the practical example
of basket-weaving, the problem of partial rigidity seems a serious one.
Are the junctions rigid? This brings us to the classical theory of geometric rigidity, which certainly
goes back to Antiquity (architects have long known about bracing frameworks), and has become a
field of mathematics during the last two centuries.
Do we require contact at junctions, or do objects "fit" in accordance with some kind of action (or
junction) at a distance? For example, an ionic crystal (like salt) consists of many positively and
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Image of cubic diamond lattice, posted in
Wikipedia Commons by Rosario van Tulpe.

But that means that materials are themselves extended
geometric structures, perhaps best envisioned as infinite
structures filling space. If the structure was a regular array
at a nanoscopic level, one could imagine that the resulting
crystal would tend to have cleavage planes and various
rotational and mirror symmetries. From cleavage planes,
mathematicians like Augustin Cauchy devised polyhedra
(just as Archimedes devised polyhedra from cleavage
planes -- although there is no surviving evidence that
Archimedes was inspired by crystals) (although, for all we
know, he might have been). From the symmetries,
physicists like Auguste Bravais and mathematicians like
Yevgraf Fyodorov devised the crystallographic groups in a
massive effort that spanned the Nineteenth century and the
careers of many scientists.

In the early Twentieth century, physicists and chemists devised methods for determining the structure of
materials. Since then, chemists have developed methods for designing crystals and then building them, as
opposed to the alchemical approach (also known as combinatorial chemistry) of conducting zillions of
experiments mixing things together and seeing what happened. We are entering an age when, like Vitruvius,
we design the thing we are going to make, and then we make it. It is still a simple age, for we have not
developed chemical equivalents of the architectural design methods and construction techniques of the
Renaissance. That's what's coming next.

Meanwhile, the design of buildings has become divided between architects, who are theoretically concerned
with the overall form and ergonomics of the building, while structural engineers are concerned with the
integrity and soundness of the buildings. The growing demands on the actual performance of modern
buildings -- to lower energy costs, reduce environmental footprints, enable ready navigation, etc. -- suggest
that the demand for the mathematical tools for comprehensive design will only increase. And design
considerations will include the geometry of the structure itself.

This web-page is not the first manifesto about reticular geometry, although it may be the first current one
with a mathematical slant. For a more materials science slant, see:

Building Units Design and Scale Chemistry, by Gérard Férey; published in the Journal of Solid State
Chemistry in 2000.
Reticular synthesis and the design of new materials, by Omar M. Yaghi, Michael O'Keeffe, Nathan W.
Ockwig, Hee K. Chae, Mohamed Eddaoudi & Jaheon Kim; published in Nature in 2003.

The books to begin are probably:

Three-dimensional Nets and Polyhedra, by Alexander Wells. This is the book that got
crystallographers to look carefully at crystal nets.
Crystal Structures I: Patterns and Symmetry, by M. O’Keeffe & B. G. Hyde. Probably still the basic
source on crystal nets.
Quasicrystals and geometry, by Marjorie Senechal. Overview.

Here are some links to scientific and engineering enterprises that are increasingly relying on reticular
geometry for design, and to resources:

The International Society for Nanoscale Science, Computation and Engineering.
The Nanoengineer, "computational tools for structural DNA nanotechnology" produced by Nanorex.
The Society of Industrial and Applied Mathematics has an Activity Group for Mathematical Aspects of
Materials Science

Here are links to some resources specific to crystal design:

Atlas of Prospective Zeolite Structures
Cambridge Structural Database from Cambridge Crystallographic Data Center
The Chemical & abstract Graph environment (CaGe)
EPINET: Euclidean Patterns in Non-Euclidean Tilings
The GAVROG Project, including the program SYSTRE

negatively charged components adhering to eachother without formal conjugal relationships
comparable to covalent bonding (like sugar). If we want to model components fixed in position by
potentials or stranger effects, we need some kind of geometric representation of the potential emerging
from the assembled structure and then acting on that assembled structure.

As an example of the third direction, consider the problem of protein folding, in which one not only has a
long chain of amino acids forming a peptide or protein, but then that chain wants to fold up so that "distant"
acids on the chain will interact, distorting the structure further. The question is: what does the resulting
structure look like? This is a computationally difficult problem, and at the moment (practiced) ad hoc human
intuition seems to be more effective than contemporary algorithms: humans can practice their intuition
folding proteins at the fold.it site. The question is: how do we compose a compact and usable mathematical
description of what we see happening when we play fold.it?

Partial view of the Mandelbrot set, posted in
Wikipedia Commons.

Another direction is the Chinese box problem: frequently,
an intricate object (like a cathedral) will have intricate
architectural elements (like flying buttresses) which may
itself have intricate architectural elements (like gargoyles),
and so on. The most popular mathematical example is the
fractal, which was introduced in the early Twentieth
century by Helge von Koch as a concrete example of a
continuous but nowhere differentiable function; they were
popularized by Benoit Mandelbrot, who sold many
people, from biologists to cinematic special effects
engineers, on the use of iterative processes to generate
complex structures. In many ways, these fractals seem to
be scratching the surface, for they do not seem to display
the potential of, say, Matryoshka dolls to generate objects
that vary depending on the scale. But the field is still
rather new.

And then there is the issue of the effect that such structures have on their environment, e.g., the x-ray
diffraction patterns one obtains when shining radiation of particular wavelengths through them...

Here are some books to start with.

Tilings and Patterns: An Introduction, by Branko Grunbaum and G. C. Shephard. Still the primary
source on tilings.
Groups, Graphs and Trees, by John Meier. Introduction to geometric group theory on graphs.
N-dimensional crystallography, by R. L. E. Schwarzenberger. Algebraic & analytic approach to the
space groups.
Geometry and Symmetry, by Paul Yale. Geometric approach to the space groups.

Here are some links & resources.

The Association for Computing Machinery has a Special Interest Group on Graphics and Interactive
Techniques (SIGGRAPH)
David Epstein's list of Geometry in Action journals.
Jeff Erickson's list of Computational Geometry journals, and his Computational Geometry links.
Jemanshu Kaul's list of Journals (etc.) in Discrete Mathematics and related fields
Jon McCammon's page of links for Geometric Group Theory
The Society for Industrial Mathematics has a Special Interest Activity Group on Geometric Design

7/31/24, 12:22 PM Main Page on Reticular Geometry

shell.cas.usf.edu/~mccolm/research/RetGeometry.html 5/7

http://en.wikipedia.org/wiki/Augustin_Cauchy
http://en.wikipedia.org/wiki/Auguste_Bravais
http://en.wikipedia.org/wiki/Yevgraf_Fyodorov
http://en.wikipedia.org/wiki/Space_group
http://en.wikipedia.org/wiki/Combinatorial_chemistry
http://en.wikipedia.org/wiki/Architect
http://en.wikipedia.org/wiki/Structural_engineering
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WM2-45CWTJ3-6B&_user=10&_coverDate=06%2F30%2F2000&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=60ff43f85afc70f75c5b057ca0f88ab0&searchtype=a
http://www.nature.com/nature/journal/v423/n6941/abs/nature01650.html
http://www.public.asu.edu/~rosebudx/okeeffe.htm
http://www.isnsce.org/
http://www.nanoengineer-1.com/content/
http://www.siam.org/activity/materials_science/index.php
http://www.siam.org/activity/materials_science/index.php
http://www.hypotheticalzeolites.net/
http://www.ccdc.cam.ac.uk/
http://caagt.ugent.be/CaGe/
http://epinet.anu.edu.au/
http://gavrog.sourceforge.net/
http://en.wikipedia.org/wiki/Protein_folding
http://en.wikipedia.org/wiki/Amino_acid
http://en.wikipedia.org/wiki/Peptide
http://en.wikipedia.org/wiki/Protein
http://fold.it/portal/
http://shell.cas.usf.edu/~mccolm/research/:http://en.wikipedia.org/wiki/Mandelbrot_set:
http://en.wikipedia.org/wiki/Chinese_boxes
http://en.wikipedia.org/wiki/Fractal
http://en.wikipedia.org/wiki/Koch_snowflake
http://en.wikipedia.org/wiki/Beno%C3%AEt_Mandelbrot
http://en.wikipedia.org/wiki/Matryoshka_doll
http://www.siggraph.org/
http://www.siggraph.org/
http://www.ics.uci.edu/~eppstein/gina/jour.html
http://compgeom.cs.uiuc.edu/~jeffe/compgeom/journals.html
http://compgeom.cs.uiuc.edu/~jeffe/compgeom/
http://www.math.iit.edu/~kaul/Journals.html
http://www.math.ucsb.edu/~mccammon/geogrouptheory/
http://www.ifi.uio.no/siag/


GRINSP: Geometrically Restrained Inorganic Structure Prediction
MathCryst: Commission on Mathematical and Theoretical Crystallography; International Union of
Crystallography
Nanorex, home of the Nano-engineer program
The U.S. Navy's crystal lattice structure site.
Reticular Chemistry Structure Resource [RCSR]: A database of extant nets, layers, and polyhedra
USF's own Smart Metal-organic Materials Advanced Research and Technology Transfer (SMMARTT)
interdisciplinary research center.
TOPOS: Topological Classification of Nets
S-window Crsytalline Structures and Densities (SCrysDen)

The Sociology of Reticular Geometry
The careful reader of this web-page will notice something weird about reticular geometry: it has been in near
continuous demand for at least two millennia, almost certainly at least four or five, and probably much
longer. And yet academics -- i.e., the participants in the system of subcultures of scholarship and learning --
have at best dabbled in it on occasion. The near silence in the respectable literature -- in ancient Greece,
there is a thread on highly symmetric polygons and polyhedra from Pythagoras to Archimedes and that's all -
- may lead an incautiuous observer to conclude that reticular geometry was invented one bright sunny
morning by Johannes Kepler.

Tiled floor in Herculaneum, from Wikipedia
Commons.

Yet the appearance of highly (and often accurately!)
articulated structures from the Pyramids to the Pantheon
suggest that either there was an academic tradition of
reticular geometry that has been lost (quite possible!), or
that there was a folk geometry practiced by architects and
engineers that attracted little attention from scholars (also
quite possible, recalling snide scholarly comments about
engineers). Or perhaps something in between.

And of course, today there is a great deal of interest among
computer scientists in computational geometry, which may
correspond to the interest ancient engineers had in the
subject. Computer scientists are also interested in the
artistic and illustrative uses of computer graphics, which is
used widely by engineers modelling their intended
products.

Still, the inattention from mathematicians has been enough to irritate crystallographers into all sorts of public
grumps, like the protests (see the ScienceBase post on Nature's Missing Crystal -- Found It!) that met the
publication of Toshikazu Sunada's article in the AMS Notices on Crystals That Nature Might Miss Creating;
the publication of a feature article in a mathematics flagship, a feature that overlooked a stream of literature
in materials science, was treated almost as an offense instead of a goof. This hypersensitivity by the
materials scientists suggests a certain unhappiness with academic mathematicians. Of course, materials
scientists are not the only ones to whine about mathematicians, and in fact this kind of situation is not even
unique to mathematicians. For example...

The traditional view of paleontology was that it was launched in the Renaissance when Europeans like
Leonardo da Vinci started finding strange fossils -- in Leonardo's case, sea shells on mountainsides. But
recently, folklorist Adrienne Mayor has found a lot of evidence of interest in and theorizing about fossils in
Antiquity, suggesting that there was a sort of folk or proto-paleontology back then -- a proto-paleontology
that may have been ignored by respectable biologists in Antiquity.

This kind of situation has recurred many times in the history of science. Reticular geometry seems to have
had a similar experience within the mathematical community itself.

One complicating factor is the peculiar position of geometry in mathematics, science, and the community at
large. While polyhedra have provided some of the primary symbols of mathematics to the lay public, and
while geometry has long been a foundation of science, it's centrality to mathematics has declined since

My Adventures in Reticular Geometry
I was originally trained in mathematical logic, in particular finite model theory, and I also dabbled in
combinatorics and applied probability, but after being abducted by chemists, I started working on the
problem of designing crystals that chemists could synthesize. I have worked on programs that would design
crystals, and these led me to the theoretical issues underlying the programs, and thus directly into reticular
geometry.

My programs have found a lot of crystal nets, some
already known, some new, some chemically
plausible, some not. Image is output from my Maple
program.

I got started with somewhat non-geometric but still
reticular (articulation) issues in DNA computing, but
gradually turned to crystal design using reticular
geometry. During 2007, I worked with Edwin Clark
on a heuristic to generate crystal nets (which in turn
rests on the mathematical properties of periodic
graphs), and he composed a program, based on a
heuristic capable of producing nets from any
isomorphism class of uninodal nets.

I have since developed a heuristic capable of
producing crystal nets from all isomorphism classes,
using techniques from geometric group theory and
linear algebra, although the justification that it works
requires some analysis. This heuristic is in the same
family as the GRINSP and SCIBS heuristics, in that
one starts with a putative fragment of the net and
applies a symmetry group to that fragment to get lots
of fragments that together make up the entire net. In
practice, I have a sort of Model A contraption that has
given me lots of binodal (two orbits of vertices) nets
of one or two orbits of edges; hopefully, successor
programs under development will be more powerful.

Meanwhile, I am trying to understand reticular geometry as a field in itself, which includes getting an idea of
what it's theoretical structure looks like. All input on this exploration is welcome (my email address is
mccolm@usf.edu).

Announcements
Two things:

An extremely hostile Version 0.8 of the Crystal Turtlebug program has been posted at Sourceforge. It
consists of several Python worksheets, and input is via a Python worksheet. We are working on
improving many aspects of the program, including I/O. Comments are appreciated.
I am putting up a new Crystal Mathematician weblog and web resource. Comments are appreciated.

My Research
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Newton; while geometry and number theory were the pillars of mathematics up into the Renaissance, that
was not true afterwards, no matter what Kant said about space (geometry) and time (number theory), and by
the Twentieth century, the pillars of mathematics were algebra and analysis.

The appearance of non-Euclidean geometries and their
applications to science (especially in the theories of
relativity and quantum mechanics) seems to have led to
geometry, as a social phenomenon, being more about
space than about constructions in space. Of course,
artistic movements were inspired or partly inspired by
geometry were interested in things in space, and
chemists and materials scientists doggedly concentrated
on things in space, so geometric constructions continued
to appear. Artists like Maurits Cornelis Escher and
mathematicians like Harold Scott MacDonald Coxeter
continued to be interested in the shapes of things in
space. David Logothetti's cartoon of "Donald" Coxeter

exhuming geometry, posted in a PDF by Steven
Cullinane.

Some mathematicians are interested in the shapes of things in space, although much current research on
constructions like buildings is aimed at finding accessible representations of groups: so again, much of
reticular geometry in mathematics is in service to algebra, and its service is to make geometric
representations of algebraic objects. This is not unlike the service that reticular geometry provides for
computer graphics and geometric design (modelling), but the result is that there is relatively little "pure"
reticular geometry.

A lack of pure reticular geometry translates into a lack of pure reticular geometers, but on the other hand, the
fact that reticular geometry pervades several domains outside of mathematics departments was seen at two
conferences.

In April, 1984, at Smith College, elementary school, middle school, high school, college and graduate
students, teachers, artists, scientists, mathematicians, engineers, architects, model-building enthusiasts,
mystics and townspeople attended a Shaping Space Conference, from which Marjorie Senechal and
George Fleck derived the anthology, Shaping Space: A Polyhedral Approach.
In November, 2007, at the University of South Florida, participants spent several days Knotting
Mathematics and Art: Conference in Low Dimensional Topology and Mathematical Art. Artists,
mathematicians, and nanoscientists discussed very similar objects.

And it doesn't take much effort to find all kinds of polyhedral and even stranger articulating structures in
graphics scattered about the www.

Meanwhile, scientists and engineers do all kinds of reticular geometry -- without mathematical supervision.
Just as the High Culture world distinguishes between arts (like painting and sculpture, practiced by artists)
and crafts (like jewelry and apparel, practiced by craftspeople), so there seems to be a distinction between
mathematics produced largely by mathematicians, and ("folk"?) mathematics produced largely by non-
mathematicians. Much of reticular geometry may fall in the latter category.

Here are some enthusiasts, scholarly or otherwise:

David Eppstein is a professor of computer science at UC Irvine, and maintains a Geometry Junkyard.
George Hart is a sculptor, and he maintains an on-line Virtual Polyhedra: Encyclopedia of Polyhedra.

Probably the places to begin are the two Wikipedia pages that I launched:

Periodic graphs (geometry) goes into models of crystals (at the molecular or atomic level) from a
mathematical point of view.
Periodic graphs (crystallography) goes into the project of using these models to analyze or even design
crystals.

I also wax eloquent on mathematically crystallographic matters on my new weblog as the Crystal
Mathematician. My primary project is:

The Crystal Turtlebug

The Crystal Turtlebug crystal design program posted on Sourceforge generates
blueprints for designing crystals at the atomic or molecular level.

Then here are some papers ... more on the way.

Here is my talk on the heuristic presented to the Forty-First Southeastern International Conference on
Combinatorics, Graph Theory, and Computing conference in Boca Raton, and here is the
communication announcing the program in Crystal Growth and Design.
Conference papers for which the main papers are being composed:

A Computational Model for Self-assembling Flexible Tiles (with Natasha Jonoska) 4th
International Conference on Unconventional Computation, Sevilla, Spain, October 2005, in:
Proceedings LNCS 3699; ed. by Cristian S. Calude, Michael J. Dinneen, Gheorghe Paun,
Mario J. Prez-Jimnez, Grzegorz Rozenberg; pp. 142 – 156.
Flexible versus Rigid Tile Assembly (with Natasha Jonoska) 5th International Conference on
Unconventional Computation, York, England, September 2006, in: Proceedings LNCS 4135;
ed. by Cristian S. Calude et al; pp. 139 – 151.
Describing Self-assembly of Nanostructures (with Natasha Jonoska) SOFSEM 2008: Theory
and Practice of Computer Science Novy Smokovec, Slovakia, 2008, in: Proceedings LNCS
4910; ed. by Alberto Bertoni, et al; pp. 66 – 73.
A Formal Crystal Description System (with W. E. Clark and M. Eddaoudi), presented at the
2008 ISNSCE Foundations of Nanoscience (FNANO) Conference.

Main papers:
The group-theoretic formulation of the algorithm is described in Generating Geometric Graphs
Using Automorphisms.
The module-theoretic formulation of the algorithm is described in Periodic Euclidean Graphs on
Integer Points.

On the related area of DNA computation:
Complexity Classes for Self-Assembling Flexible Tiles (with Natasha Jonoska), Theor. Comp.
Sci. 410:4-5 (2009), 332–346.
On Stoichiometry for the Assembly of Flexible Tile DNA Complexes (with Ana Staninska and
Natasha Jonoska) Natural Comp. (2010) (20DOI: 10.1007/s11047-009-9169-1).
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