Mechanical Engineering Technical Electives

<u>Note</u>: The purpose of this document is to provide students with a general idea as to what semesters the technical electives tend to be offered. Please be advised that course offerings are contingent upon departmental resources, so not every course will be offered in the semester in which it is listed. Also, you will notice that EML 4930 is used for a myriad of special topic technical electives, which may vary by semester.

Course Code	Course Title	Fall	Spring
	Robotic Systems		
EML 4930	The purpose of this course is to understand the science and engineering of mechanical manipulation from the prospective of Kinematics. This course requires basic knowledge in statics, dynamics, linear algebra, and higher-level programming. Students will use MATLAB, Python and/or Robotics Operating System (ROS) to work on homework and projects. An introductory controls course is desired but not necessary.	Х	
	Prerequisites: EGN 3321 and EML 3500		
	Instructor: Dr. Redwan Alqasemi		
	Rehabilitation Engineering		
EML 4930	The purpose of this course is to introduce engineering principles and provide a foundation in rehabilitation engineering, a field dedicated to maximizing the health and well-being of people with disabilities through technology.		Х
	Prerequisites: EGN 3343 and EML 3500		
	Instructor: Dr. Stepanie Carev		
	Intro to Bioastronautics		
BME 4440	This course will discuss the space environment, impacts of microgravity on human physiology, countermeasures, human factors in spacesuit and spacecraft design, astronaut training, life support systems, mission planning, and private space flight.	X	
	Prerequisite: EGN 3343		
	Instructor: Dr. Stephanie Carey		
	Applied FEA		
EML 4536	Theory and practical applications of Finite Element Method, Matrix methods, Linear and Non-linear structural analysis of Trusses, Beams, Frames and three-dimensional machine components/assemblies. Buckling and modal analysis. ANSYS/Solidworks simulations.	X	X
	Pre/Corequisite: EML 4501		
	Instructor: Dr. Ajit Mujumdar		

	Materials Selection		
	This course will cover advanced concepts and strategies of		
	materials selection for any type of engineering	Х	Х
	design. Engineering materials and their properties are explored		
EML 4542	using the Ashby Materials Selection Charts. Case studies of		
	materials selection in design with metals, ceramics, polymers, and		
	composites are presented. The course introduces analytical tools		
	and methods for material selection. Modern material selection		
	software "Cambridge Engineering Selector" will be applied to		
	material and process selection.		
	Prerequisites: EGN 3365, EML 3500 and EGN 3343		
	Instructor: Dr. Ipek Yucelen		

	Alternative and Renewable Energy	
	An overview of energy conversion for electrical power	
EML 4450	The course is simed at mechanical angineering seniors and	
	includes hands on design projects	
	includes hands-on design projects.	
	Prerequisites: EGN 3343 and EML 3500	
	Instructor: TBD	
	A/C Design	
EML 4601	Application of thermodynamics, heat transfer, and fluid flow to sizing of HVAC systems. Heating and cooling calculations, air requirements, equipment sizing. Energy Code requirements. Design project.	
	Prerequisites: EGN 3343 and EML 3500	
	Instructor: TBD	
	Optical Product Technology	
OSE 4601	Overview of the operating principles, design, and mechanical construction of a broad range of optically based products. The course is aimed at mechanical engineering seniors and includes hands-on design projects.	
	Prerequisites: EGN 3343 and EML 3500	
	Instructor: TBD	
	Principles of Fracture Mechanics	
EML 4575	Introduction of failure and fracture of linear and nonlinear engineering materials, as well as designing against fracture in modern materials.	Х
	Prerequisites: EGN 3343 and EML 3500	
	Instructor: Dr. Alex Volinksy	

	Microcontrollers		
EML 4310	To introduce students to microcontroller technology, and to provide them with an understanding of the concepts and principles used to interface input and output devices to microcontrollers, program microcontrollers, and to develop applications.	X	Х
	Pre/Corequisite: EML 4312		
	Instructor: Dr. Daniel Hess		
	Haptics		
EML 4593	Course covers the theory and implementation of haptic interfaces and rendering, teleoperation, modeling, control and stability of feedback for robotic systems and virtual environments, and the related human haptic sensing capabilities.		Х
	Prerequisites: EML 3041 and EML 4312		
	Instructor: Dr. Kyle Reed		
	Sustainable Design and Materials		Х
EML 4503	This course integrates sustainability into the design of engineered products. Topics include materials selection and function performance, design for the 4 Rs, end-of-life concerns and product life cycle assessment methods.		
	Prerequisite: EML 4501		
	Instructor: Dr. Nancy Diaz-Elsayed		
	Independent Study	Х	Х
EML 4905	Specialized independent study determined by the student's needs and interests.		
	The following form must be submitted for your Independent Study: https://www.usf.edu/engineering/me/documents/independentstud ycontract.pdf		

	Senior Mechanical Design	Х	Х
	Comprehensive design or feasibility study project. In some cases, may be a continuation of EML 4501.		
EML 4552	The following form must be submitted for your Senior		
	Mechanical Design to be approved:		
	https://www.usf.edu/engineering/me/documents/seniormechanic		
	aldesigncontract.pdf		
	Prerequisite: EML 4501		

	-	-	
	Advanced CAD/CAM		
EML 4930	The purpose of this course is to understand and be proficient in using the advanced features, capabilities, and practical applications of CAD and CAM, a 3D feature-based solid modeling software, Solidworks. Students will be prepared to work in the design and manufacturing industry by assisting in getting certified with a Professional level of Design (CSWP – Mechanical Design) and Manufacturing (CSWP – CAM). The additional bonus is to get certified at the Associate level of Additive Manufacturing (CSWA-Additive Manufacturing).		
	Prerequisite: EML 3022		
	Instructor: Dr. Ajit Mujumdar		
	Industry Internship	Х	Х
EML 4940	Individual study as practical mechanical engineering and similar areas-related work under industrial supervision with faculty approval and assessment		
	Prerequisites: EGN 3343 and EML 3500		
	Instructor: Dr. Ajit Mujumdar		
	Considered as an outside-department tech elective		
	Micro Electromechanical Systems (MEMS)	Х	
EML 4930	Introduction to the field of microelectromechanical systems (MEMS), including transducer performance metrics, theoretical modeling of devices, microfabrication processes, and optimization.		
	Pre/Corequisite: Vibrations (EML 4220)		
	Instructor: Dr. Brett Freidkes		
	Supersonic and Hypersonic Flow	Х	
EML 4930	Principles of compressible fluid flow; normal and oblique shocks; nozzles and diffusers; shock tubes; conical flow; introduction to 3D flow; method of characteristics; introduction to compressible boundary layers; introduction to transonic and hypersonic flows		
	Prerequisite: EML 3701		
	Instructor: Dr. Anshuman Pandey		
	Fundamentals of Aerodynamics		
EAS 4101	Incompressible aerodynamics, integral and differential governing equations, potential flow, boundary layers, airfoils, wings, and numerical techniques.	х	
	Prerequisites: EML 3041 and EML 3701		
	Instructor: Dr. Sonya Tiomkin		

	Introduction to Flight		
EAS 4020	Introduction to the science and engineering of aircraft. Overview of applied aerodynamics, performance, stability, propulsion, and structures.		Х
	Prerequisites: EGN 3343, EML 3500 and EML 3035		
	Instructor: Dr. Sonya Tiomkin		
	Propulsion		
EML 4419	Introduction to the design of propulsion systems. Basic analysis of internal combustion, jet and rocket engines. Application to ground and air transportation. Advanced propulsion concepts. Special topics for class discussion		Х
	Prerequisites: EML 3701 and EML 3500		
	Instructor: Dr. Ahmadreza Vaselbehagh		
	Introduction to Composite Materials		Х
EML 4230	The course introduces manufacturing types and applications of advanced composites. Students study micromechanical and macromechanical behavior of a lamina and analyze and design a laminated structure made of advanced composite materials.		
	Prerequisites: EML 3500 and EML 3041		
	Instructory Dr. Autor Voy		
EML 4914	Advanced Undergraduate Research Experience	Х	Х
	This class is a supervised research experience offered for undergraduates in Mechanical Engineering		
	Prerequisites: EML 3500 and EGN 3343		

For the special topics tech electives (EML 4930), please request a course permit here: <u>https://usf.az1.qualtrics.com/jfe/form/SV_5d7iak2ptL4OI6h</u>. The permit request form can also be found on our departmental website.

Outside-Department Technical Electives

Note: Students are permitted to register for one technical elective that does not fall within the Mechanical Engineering department. You must contact that respective department to obtain a permit. The courses listed below do not require pre-approval, but if a course is not listed here, you must obtain approval from a department advisor. All courses are subject to availability.

Course Code	Course Title	Fall	Spring	Summer	Dept.
CES 3102	Structures I Analysis of simple structural systems, both determinate and indeterminate. Moment area theorems; influence lines; introduction to steel design.		Х	Х	Civil
ENV 4001	Environmental Systems Engineering Introduction to environmental engineering. Protection of human health, air, water, and land resources. Sustainable design, water quality, solid and hazardous waste management, air quality control, contaminated environments. Application of mass balances.	Х	X		Civil
EEL 4936 /4935	Make: Hands-On Engineering Inspired by the 'Maker Movement', the objective of the Make course is to introduce students to the creative design and manufacturing of devices following the engineering design process. The course will teach students the essential skills needed for the design of "mechatronic" devices (i.e. devices incorporating electronic, mechanical and software-based components). Students will learn the use of 3D design software, the programming of a micro controller (Arduino), and to build electronic control circuits. The course will be taught through direct hands on instruction in the classroom. All students will design and build a prototype device during this course. The course will also introduce to modern manufacturing processes such as 3D printing and laser cutting, and give an introduction to project planning and cost estimation.	х	X		Electrical
EGN 3375	Electromechanical Systems Analysis of electromechanical device performance: transformers, transducers, DC motors and generators, motors and alternators.	x	x		Electrical
ECH 3702	Instrument Systems I Basic concepts of electric circuits and their applications. Resistors, capacitors, inductors, logic operations, junction devices. Programmable Logic controllers, ladder diagrams.	х	х		Chemical
ECH 4931	Modern Biomedical Technologies Biomedical technologies broadly refer to applications of state-of-the-art engineering practices and emerging technologies to medicine and biomedical systems. In this course, major advances in modern Biomedical technologies will be addressed. You will learn about new possibilities brought by development of interfaces between human body and computers, creation of artificial body parts, deciphering of brain signals, design of new generation biomedical instruments, and many other interesting topics.	x			Chemical
ESI 4244	Design of Experiments Activity forecasting models and control. Design and use of inventory control models, both designs applicable to engineering analyses. Analysis of variance and regression.	X			Industrial
EIN 4601C	Automation and Robotics Introduction to the practices and concepts of automation as applied to material handling, inventory storage, material transfer, industrial processes and quality control		Х		Industrial

	ISO 9000/14000			Х	Industrial
EIN					
4178	This course covers analysis of ISO 9000 and ISO 14000 publications with a				
	view towards understanding the documentation process, auditing for registration purposes, and the relationship to the quality systems and				
	programs.				
	Project Management		X		Industrial
EIN					
4142	Provide principles and techniques for planning, scheduling and managing				
	projects in engineering and related environments. Applies analytical tools				
	and techniques including software to solve project management problems.				
EIN	Principles of Engineering Management		Х		Industrial
4180					
	Emphasis is placed on management practice in an engineering-intensive				
	management organizing ethics leadership innovation and change and				
	communication skills				
	Advanced Lean Six Sigma	Х			Industrial
EIN	Advanced Lean Six Sigma expands upon initial exposure to lean six sigma				
4453	knowledge of available statistical tools and techniques. It carries the service-				
	learning designation and includes a compulsory project where learned				
	concepts are applied.				
EIN	Quality Management Systems		X		Industrial
4173					
	This course presents the functions and responsibilities of the quality				
	organization. Quality Management Systems concepts and tools for				
	continuous improvement, include Baldrige Criteria, ISO 9000, and 6- Sigma,				
EIN	Creativity in Technology	x			Industrial
4200					maasanan
	This course is designed to aid in re-opening the creativity within ourselves				
	so that each life can be a work of art. Exploration and discovery of the				
	individual's higher SELF helps to develop their complete potential and				
	creativity in all parts of life				
BME	Introduction to Biomedical Engineering	x	x		Biomedical
4100					Bromearear
	An overview of biomedical engineering, including material and energy				
	balances on human subjects, biomechanics, biomaterials, cellular and tissue				
	engineering, biomedical imaging, neuro-engineering, cardiovascular				
	systems, nanomedicine, drug delivery, engineering ethics, intellectual				
	property and product development.				